
Measurement of Lift and Drag in the Laminar Wind Tunnel
D.Althaus

The measurement of the aerodynamic coefficients of a two dimensional model in the LWK is
fully automated. So the corrected polar is plotted on line and can be observed on a plotter and a
screen. During integration of the drag along the span the variation of drag can be controlled.

The total installation is calibrated by exact pressures to the end of the results on the plotter and
screen before measuring a polar.
The zeroes of the pressure transducers are controlled and corrected (if necessary) as well.

The test results compare well with those of other facilities /5/6/.

Measurement of lift:
The experimental setup for lift measurement

Measurement of drag
The experimental setup for drag measurement

Experimental integration



Figure 2

Measurement of lift.

The lift of the model is similar to the Langley Low Turbulence Tunnels /1 / obtained by
integrating the pressure distributions along the tunnel walls opposite to the model surfaces.
As the integration is performed only over a restricted length instead of infinity in upstream and
downstream directions a correction factor η is applied that gives the ratio of the integrated lift to
the actual lift / 2/. First the correction factor xη applying to a point vortex was found then the

weighted average of this factor over the model chord was estimated.
This single vortex is assumed on the axis of the test section at x=0 , y=0. To meet the condition
that only a tangential velocity u along the walls exists (v=0) an infinite vertical row of vortices of
alternating sign is necessary see figure 1.

The complex potential function f of this image
system can be thought to be composed of the potential
function 1f formed by all vortices with positive sign and

distance 2h to the origin and the potential function 2f  of
the vortices with negative sign with their origin shifted by

hi ⋅ see figure 2.
Γ strength of a single vortex
z complex variable (x + iy)
h tunnel height



The potential function 1f  of the positive vortices:

A finite number of vortices with strength 
π2
Γ

 is located at y=0, ±2h, ±4h, … ±n 2h

The potential function of these vortices is
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the last term which is constant can be dropped.
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The potential function  2f  of the vortices with negative sign which is shifted by hi ⋅  along the y-
axis is
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and the potential function for the total vortex system is
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The complex velocity is

viu
dz

df ⋅−==ϖ



( )
h

hiz
ctgh

h

i
z

h
ctgh

h

i

222222

⋅−⋅
⋅

Γ−⋅⋅
⋅

Γ= π
π

ππ
π

πϖ

( )




 ⋅−−⋅⋅Γ= hiz

h
ctghz

h
ctgh

h

i

224

ππϖ (5)

To calculate the pressure distribution along the tunnel walls the induced velocity at

2

h
ixz ⋅+= must be found.
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The resulting pressure coefficient RP  for the tunnel walls is
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The pressure distribution along the tunnel walls is integrated between the downstream position n
to the upstream position m. For a point vortex on the tunnel axis with distance x from the origin
the limits of integration are n – x and m – x. The lift 'L  associated with a point vortex is given by
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where 0q is the free stream dynamic pressure.



This integration of the pressure along the wall is performed by an experimental installation.

The total lift L of a point vortex is given by
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In the LWK the orifices used to measure the pressure extend from m = 2,38 m to n = 2,31 m.
Tunnel height h = 2,73 m.
The correction factor for a given lift distribution is obtained from
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The pressure distribution of a model can be decomposed in a basic distribution with constant
pressure and correcting factor bη and a distribution due to an angle of attack with correcting

factor aη .

According to thin-airfoil theory the pressure distribution of a flat plate is
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The correcting factor aη  can be calculated from (17) and (18).

The model is mounted with its quarter chord point at the tunnel center x=0 , y=0. In equation (17)

the transformation 4' cmm +=  and 4' cnn += has to be performed.



The correcting factor bη for a constant pressure 1=RP is calculated by
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The lift coefficient 'lc  (uncorrected for tunnel wall effects) is given in terms of the lift coefficient

obtained by integration along the tunnel walls lTc is given by
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The correcting factors for different model chords are tabulated in table 1.

As aη does not differ much from bη and the influence of airfoil thickness and lift distribution is
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The agreement between lift coefficients taken from integration along tunnel walls and lift
coefficients calculated from pressure orifices on the model surface confirm this method.

Table 1



Experimental setup for lift measurement.

Pressure orifices along the walls of the test section opposite to the model which are positioned in
a distance of 50 millimeters at half-span position and ranging from 2,39 meters upstream and
2.32 m downstream from the center of the turn tables are connected by tubes of  a 1 mm diameter
and a length of 145 mm to a common tube. The integrated pressures along the length L= 4,71 m
are Rcp  along the ‘ceiling’ and Rfp along the ‘floor’. The resulting lift force 'l on the tunnel walls

is proportional to the difference of these pressures multiplied with the area where b is the span of
the test section.
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Measurement of drag.

The drag of an airfoil can be evaluated /2/3/4/ from the loss of total pressure in the wake. The
total pressure wg in the wake is measured by a row of small pitot tubes which form a “rake”.

The drag coefficient is defined by
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0g and 0q are the total pressure and the stagnation pressure in front of the airfoil.

The distribution of the total pressure in the wake is simulated by a probability curve of the form
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If wp  is the static pressure in the wake, which is assumed to be constant, the uncorrected drag

coefficient according to B.M. Jones /2 / is
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Plots of the factor K as function of wS and
maxcg were linearized to give

( ) wcwc SgSgK −⋅−⋅−= 1(666.0264.0018.1, maxmax
) (32)



The static pressure coefficient can be rewritten: 

(33)

The drag coefficient uncorrected for tunnel wall interference
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can be obtained by integration of the loss of total pressure over the wake. For the calculation of K
the maximum maxcg  and the static pressure difference wp∆  must be known.

K is in the order of 0.8 to 0.9.

Experimental setup for drag measurement.

In the LWK the rake for the measurement of drag is mounted on a traversing system about 30%
of chord downstream of the model. It is automatically adjusted in the middle of the wake and the
flow direction. In a plane parallel to the integrating rake a row of small total head tubes is
installed. These are connected to a multi-tube liquid manometer. By this means it can be
observed if the wake is within the width of the integrating rake. The measurement of drag is
stopped when flow separation begins.
In some cases longitudinal vortices in the boundary layers of the airfoil cause periodical
variations of the drag in spanwise direction /5 /. By traversing  the rake with constant velocity
along the span while triggering and integrating the pressure signals a mean value of the drag is
obtained.
Like the integral of the wall pressure for the measurement of lift the integral over the total
pressure in the wake is gained by experimental integration. Rakes with different width are used.
For model chords between 0.5 and 0.7 meters a rake with a width of 88 Millimeters is used
which is built up of 56 small tubes with 0.8 mm outer and 0.6 mm inner diameter and equal
lengths of 120 mm. They are soldered to a common tube with equal spaces.. In this tube  the
integrated pressure wG exists. The open ends of the small tubes are thoroughly fabricated.

The static pressure wp in the wake is measured by a small tube with static orifices and the

maximum of total pressure 
maxcg by a small total head tube in the middle of the rake.

Thus the correction factor K can be obtained from 
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The experimental integration.

The lift of the model is measured by integration along the tunnel walls, also the drag is evaluated
by the integration of the total pressure over the wake. These integrations are performed by an
experimental procedure /4 /.
A pressure distribution P (x) along the x-axis may be given over the length ∆x. By orifices at  n
equidistant positions which are connected to a common tube by small tubes of equal diameter d
and equal length the local pressures iP  are fed to the common tube resulting in the pressure Rp .

The pressure difference over each of these small tubes is iP - Rp . The flow within the small tubes

is laminar when their  diameter d and length give a Reynolds number
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with u  = medium velocity over the cross section of the tubes.
With these assumption the law of Hagen-Poiseulle for the flow in the tubes is
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